
GPS-X/Python/Matlab Link

You can interact with the Matlab Engine from GPS-X’s Python Script Manager. It is assumed that you
have Python v2.7 or higher installed (GPS-X comes with Python v2.7 and v3.7) and that you are licensed
for, and know how to use, the Python Script Manager in GPS-X (see chapter 14 of the GPS-X User Guide).
You will need Matlab v2014b (64 bit) or higher installed. See MATLAB Products Python Compatibility
(mathworks.com)

The first step is to install Matlab’s Python package. Here it is assumed that you have selected GPS-X’s
default Python 3.7 distribution.

Open a Windows Command Prompt and execute the following (you might need administrator privileges

to execute these commands):

• cd "matlabroot\extern\engines\python"

• "gpsxinstalldir\python37\python.exe" setup.py install

Replace matlabroot and gpsxinstalldir with actual locations. If you are configured to use a different
Python distribution then change the path in the second step to point to that python.exe

Example Usage

• Start GPS-X and Select File>Open…

• Browse to:
 "gpsxinstalldir\acm\demo\noise\" and load noise.lyt.

• Switch to Simulation Mode.

• Create a new scenario named “python”

• Right click on the layout background and select System>Input Parameters>Simulation Tool Settings.
Scroll down and turn off “Matlab link control”

• Select Tools>Python Script Manager. Click New to create a python script file. Then Click Edit and
make the following changes to the script.

import matlab.engine

import numpy as np

try:

 eng

except NameError:

 eng = None

if eng == None:

 eng = matlab.engine.start_matlab()

 sd = eng.clock()

 sdnp = np.array(sd._data)

 sum = 0

 for x in sdnp:

 sum = sum + 100 * x

 eng.rng(int(sum))

qinf_sp = gpsx.getValue('qinf_sp')

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/support/sysreq/files/python-compatibility.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/support/sysreq/files/python-compatibility.pdf

incr = 0.0

start() function executed once at simulation start

def start():

 try:

 qconinf = qinf_sp

 gpsx.setValue('qconinf', qconinf)

 except Exception as e:

 print(e)

cint() function executed at every communication interval

def cint():

 global incr

 try:

 incr = incr + 10.0

 qconinf = qinf_sp + 100.0 * eng.randn(1,1)

 gpsx.setValue('qconinf', qconinf)

 except Exception as e:

 print(e)

eor() function executed once at end of simulation

finished set True is required to terminate the runSim() function

def eor():

 global finished

 finished = True

 try:

 pass

 except Exception as e:

 print(e)

runSim() call starts simulation in GPS-X

try:

 runSim()

except Exception as e:

 print(e)

When you run the simulation from the Python Script Manager, you should see a random signal added to
the influent flow.

